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ABSTRACT

One of the most difficult issues in using MapReduce for parallelising and distributing large-
scale data processing is detecting straggling tasks. It is defined as recognising processes that 
are operating on weak nodes. When two steps in the Map phase (copy, combine) and three 
stages in the Reduce phase (shuffle, sort, and reduce) are included, the overall execution 
time is the sum of the execution times of these five stages. The main objective of this study 
is to calculate the remaining time to complete a task, the time taken, and the straggler(s) 
detected in parallel execution. The suggested method is based on the use of Progress Score 
(PS), Progress Rate (PR), and Remaining Time (RT) metrics to detect straggling tasks. 
The results obtained have been compared with popular algorithms in this domain, such as 
Longest Approximate Time to End (LATE) and Combinatory Late-Machine (CLM), and 
it has been demonstrated to be capable of detecting straggling tasks, accurately estimating 
execution time, and supporting task acceleration. RMSTD outperforms LATE by 23.30% 
and CLM by 19.51%.

Keywords: Big data, MapReduce, progress score, straggling tasks, stragglers 

INTRODUCTION

This paper presents a Reliable Multimetric 
Straggling Task Detection algorithm 
(RMSTD) strategy for detecting straggling 
tasks among tasks executing in parallel. The 
main aim of the RMSTD is to present an 
approach that uses multiple metrics to make 
straggler detection much more reliable and 
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accurate. Straggler detection in the Hadoop MapReduce framework refers to identifying 
tasks that take longer than expected and are known as “stragglers” (Ouyang et al., 2016). 
In straggler detection, the overall execution time is the sum of the execution times of these 
five steps, consisting of two phases in the Map phase (copy, combine) and three stages in 
the Reduce phase (copy shuffle/sort, and reduce) (Katrawi et al., 2021). 

Hadoop MapReduce and Apache Spark represent two widely adopted technologies 
for processing large datasets in the industry. Although both frameworks excel at managing 
substantial volumes of data, they diverge in terms of their architectural designs (Ketu et 
al., 2020). Hadoop MapReduce employs a cost-effective approach, utilising the Hadoop 
Distributed File System (HDFS) to execute batch processing. It is recognised for its stability 
and maturity, having been in use for an extended period and earned the trust of numerous 
organisations for handling extensive data volumes. The framework boasts a straightforward 
programming model, enhancing its usability. In contrast, Apache Spark offers a different 
approach and architecture for large-scale data processing.

Common methods of straggler detection include resource usage monitoring, where 
usage of system resources such as CPU, memory and disk utilisation is monitored as 
tasks execute, such that tasks that use fewer resources during their execution relative to 
other tasks may be declared as stragglers (Javadpour et al., 2020). Also, the Ensemble 
method integrates various straggler detection techniques to improve detection accuracy 
(Kumar et al., 2021). Profile-based analysis entails profiling tasks and finding outliers 
based on runtime, resource utilisation, or other factors. Another approach is the use 
of machine learning techniques where factors such as task running time, resource 
utilisation, input data records and cluster conditions are used to detect straggling tasks; 
this approach identifies trends in historical data in forecasting likely straggling tasks 
(Ouyang et al., 2018). 

However, in resource usage monitoring, a task’s resource utilisation may be unreliable 
as an indicator of a straggler because it could legally use fewer resources if it has minimal 
data requirements or is executing on a node with limited resources. On the other hand, 
the ensemble approach, profile-based strategy, and machine learning techniques have the 
disadvantages of complexity, high profiling, and computational overheads. In most of the 
previous works on straggler detection, the use of a single metric to detect straggling tasks 
is quite common because the MapReduce framework is designed for a homogeneous 
environment where the computational power of the various machines is the same; hence, 
there is little consideration for the CPU capability since all the tasks are expected to run at 
the same rate. This assumption is not very true in all circumstances because, in a typical data 
centre, the resources are not dedicated exclusively to a particular job; hence, the resources 
are shared. Therefore, the load on each node varies, which may, in turn, affect the rate of 
execution of the tasks spread across the nodes. Therefore, this paper proposes a Reliable 
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Multimetric Straggler Detection Algorithm (RMSTD) to address the inadequacy of the 
previous studies and improve the effectiveness of straggler detection. The contribution of 
this paper includes: 

•	 Improvement of the reliability of the straggling tasks detection by using Average 
Remaining Time (ART) to complete execution of the tasks to ensure that scenarios 
like the late start of execution of the task(s) due to the load on the node(s) and data 
skew problem rather than the usage of a single metric.

•	 The task’s historical behaviour mitigates the impact of short-term oscillations 
or outliers in the Remaining Time, resulting in a more reliable estimate of job 
completion.

•	 RMSTD offers a more trustworthy approach by considering the past average, giving 
a more informed perspective on the anticipated completion timeframes of tasks.    

RELATED WORKS

Phan et al. (2019) proposed a Framework for Assessing the Stragglers Detection (FASD) 
mechanism over MapReduce for straggler detection because other studies tend to focus 
more on the impact of stragglers. FASD presented a comprehensive straggler detection 
and reduction approach. However, the evaluation only applies to one application, and 
the study does not consider how it will be used in practice or include empirical data. The 
study also did not consider using optimal metrics in straggler detection, even though 
it offers a method for assessing straggler detection algorithms. Ghare and Leutenegger 
(2005) suggest task replication to enhance job response time. MapReduce. Dean and 
Ghemawat (2008) employ speculative execution to finish straggler jobs when parallel 
processing is nearing completion. Mantri reduces stragglers from MapReduce cluster 
processing nodes (Ananthanarayanan et al., 2019). Mantri’s core strategies are straggler 
task restarting, network-aware task placement, and task output protection. Chen et al. 
(2014) introduce the speculative execution method of Maximum Cost Performance 
(MCP). Zaharia et al. (2019)’s Longest Approximate Time to End (LATE) improves 
Hadoop task scheduling. 

In the LATE technique, the remaining running task time for each phase has been 
assumed to be the same; however, in the Reduce phase, the shuffle stage takes longer to 
complete than other stages as they are based on the prior task. According to Javadpour 
et al. (2020), Self‑Adaptive MapReduce Scheduling Algorithm (SAMR), Enhanced 
Self‑Adaptive MapReduce Scheduling Algorithm (ESAMR), and Speculative Execution 
Algorithm Based on Decision Tree (SECDT) algorithms are unable to accurately anticipate 
the running duration. It is insufficient because the present task differs in several ways from 
the prior ones. While it is crucial to consider this because the node processing durations vary 
depending on their characteristics, ESAMR only uses executable information and ignores 
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node specifications (CPU and memory). A better job assignment scheme for Hadoop, the 
Earliest Completion Time (ECT) scheme, was presented by Dai and Bassiouni (2013). Two 
improved replica placement policies for Hadoop, the Partition Replica Placement Policy 
and the Slot Replica Placement Policy, were proposed by Qiang et al. (2014) and Dai et al. 
(2016). In contrast to the widely used Standard Deviation (SD) method, Tukey’s method 
(Dai et al., 2017) adopts a statistical technique for identifying outliers that seems more 
suitable for identifying stragglers and starting speculative execution early. The sensitivity 
to extreme observations and the time it takes to find stragglers limit this strategy, too. As a 
result, most existing works declare non-straggling tasks as straggling tasks while ignoring 
true straggling tasks since they do not apply ideal parameters to recognise straggling tasks 
among parallel running tasks. 

In summary, most existing studies on straggling task detection are not based on 
optimum metrics and are usually focused on a specific situation; hence, their usage in 
other situations usually leads to failure. For example, if a system is designed to work in 
a homogeneous environment, it cannot be used in a heterogeneous environment because 
issues like skews are not considered.

PROPOSED SOLUTION

This paper presents a Reliable Multimetric Straggling Task Detection algorithm (RMSTD) 
strategy for detecting straggling tasks among tasks; the RMSTD algorithm is designed to 
improve the straggler detection strategy irrespective of the environments (homogeneous 
or heterogeneous). This approach uses optimal parameters to detect straggling tasks 
applicable in all environments, including skew situations. The primary objective of 
this problem is to estimate the correct execution time in each stage of the MapReduce 
framework, which results in the correct total execution time. The constraints associated 
with this problem are the two stages in the Map phase (copy, combine) and three stages 
of Reduce (shuffle, sort, and reduce). The total execution time is the total sum of the 
execution time of these five stages. 

The proposed method for solving this problem is calculating the Average Remaining 
Time (ART) to complete the execution of the tasks running in parallel. All tasks whose 
remaining time to complete execution is greater than the calculated ART is/are declared 
as stragglers. The computational complexity of the RMSTD algorithm is O(n), where n is 
the number of tasks in the Task_List. The algorithm iterates through each task in the list 
once and performs constant work for each task. Therefore, the algorithm’s time complexity 
is linear with respect to the input size. The design and operational process of RMSTD is 
structured into two phases: (1) the initial task allocation phase and (2) progress monitoring 
and the straggler detection phase. Figure 1 presents the design flowchart, and Algorithm 
1 shows the steps to achieve the desired result.
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Figure 1. Flowchart of RMSTD design
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Algorithm 1: RMSTD Algorithm
1.	 # Create a list of all tasks, "Task_list" with task_id, PS, PR, and RT 

attributes
2.	 # Create a list of all Straggling_tasks, "Straggler_list" 

3.	 Initialise RTSum = 0, Num-Task = total no of tasks 
4.	 For each task in Task_list
5.	      If execution = map_phase
6.	          PS =data read/data size
7.	      Else
8.	      If execution = copy_phase
9.	             PS = %processing*0.33
10.	          elseif execution = sort_phase 
11.	             PS = 0.33+ %processing*0.33 
12.	          elseif execution = reduce_phase 
13.	             PS = 0.66+ %processing*0.33
14.	         endif
15.	       Endif   

16.	 #  Calculate the progress rate (PR)
17.	      PR = PS/Time(s)

18.	 calculate the remaining time to finish the task (RT)
19.	     RT = (1-PS)/PR
20.	     Update Task_list with PS, PR, and RT
21.	     RTSum = RTSum+RT
22.	  Endfor 

23.	  RTavrg = SumRT/Num-Task

24.	  For each task in task_list:
25.	       If TaskRT > RTavrg
26.	           Add task to Straggler_list
27.	       Endif 
28.	  Endfor 

Data Generation for RMSTD

For testing the design using ART, a Java code (Algorithm 2) was used to generate test data 
for simplicity since all kinds of data can be handled by the design. Different data types to 
be processed will have a program to process the data exclusively.
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Algorithm 2: Text data generator
1.	 function NewTextFile(filePath, fileSizeInBytes):
2.	      open file at filePath for writing
3.	      create a random number generator
4.	      create a TextString object
5.	      bytesWritten = 0

6.	      while byteswritten < fileSizeInBytes
7.	           clear the TextString
8.	           lineLength = generate a random number between 1 and 10
9.	           randomLine = LineOfText(lineLength)
10.	           write randomLine to the file
11.	           write a new line character to the file
12.	 bytesWritten += length of randomLine + length of new line  

character
13.	           if bytesWritten is a multiple of 10 MB
14.	               flush the writer to free up memory
15.	           endif
16.	      endwhile
17.	      close the file
18.	   return  NewTextFile

19.	  function LineOfText(lineLength):
20.	      create a TextString object
21.	      for i = 0 to lineLength - 1
22.	           XterLetter = generate a random letter
23.	           append XterLetter to the TextString
24.	       endfor
25.	   return the TextString as a string

26.	 main:
27.	 fileSizeInBytes = desired file size in bytes
28.	 filePath = path to the output file

29.	 NewTextFile(filePath, fileSizeInBytes)

Initial Task Allocation

The task allocation procedure in the Map phase is an important part of the MapReduce 
framework. It helps ensure that the MapReduce job is executed efficiently, and the results 
are timely. In this design phase, the input data is read and uploaded into HDFS together with 
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the job configuration. The allocation of input data to nodes is responsible for processing 
the input data and generating intermediate key-value pairs in this architecture phase. The 
Namenode begins the task allocation method by breaking the input data into chunks and 
assigning each chunk to the Map task. The Map jobs are run in parallel on the available 
nodes in the Hadoop cluster, and it also generates intermediate key-value pairs that are 
saved in HDFS, as depicted in Figure 2. The following are the steps involved in allocating 
tasks to selected nodes. The Namenode splits the input data into 64Mb/128MB/256Mb 
record-size chunks. Each split is assigned to a Map job. The Job Tracker considers the 
load on each node, the locality of the chunks’ data, and the available resources on each 
one while allocating tasks to nodes. A task is often assigned to the nodes with the available 
resources and close to the data to improve the MapReduce job performance (Algorithm 3).

Figure 2. Flowchart of initial task allocation
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Algorithm 3: Initial Task Allocation Algorithm
1.	 Input: MapReduce job configuration, input data
2.	 Output: Map task assignments
3.	 Split input data into input splits based on block size
4.	 Initialise an empty map of nodes to assigned tasks
5.	 For each input split:
6.	      Select the nodes with data locality for the input split
7.	      Assign the input split to a selected node with the least number of 

assigned             
     tasks

8.	 EndFor
9.	 Update the map of the node to assigned tasks
10.	 Return the map of the node to the assigned tasks

Progress Monitoring and Straggler Detection

The role of this phase in the operation of RMSTD is to use Progress Score, Progress Rate, 
and Remaining Time to complete and detect straggling tasks among tasks executing in 
parallel on the Hadoop cluster. In a Hadoop cluster, where tasks are executed in parallel, 
it is crucial to monitor the progress of individual tasks to ensure the timely completion 
of jobs. Straggling task(s) whose progress is/are slower than others can significantly 
impact the job’s overall performance and completion time. To address this challenge, 
progress monitoring techniques employing metrics such as Progress Score, Progress 
Rate, and Remaining Time have emerged as valuable tools for detecting straggling tasks 
in Hadoop clusters.

Progress Score Calculation

The Progress Score metric provides an overview of the progress made by a task relative 
to the total amount of work it needs to complete. It is calculated by dividing the amount 
of work completed by the total amount of work. It is a score between 0 and 1 (from the 
literature), where 0 indicates that the task has not started, and 1 indicates that the task is 
complete. A high progress score indicates that a task is nearing completion, while a low 
score suggests that a task is lagging. Tracking each task’s Progress Score makes it possible 
to identify tasks that have fallen behind in their progress. A lower Progress Score compared 
to others suggests a potential straggler.

In a homogeneous environment, that is, where all the nodes are the same in terms of 
processing capacity, the processing is expected to proceed at the same rate; hence, any 
task/node with a problem can be easily detected by using PS calculated as Equation 1:
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                                          (1) 				    [1]

where, PS[i] is the ith task’s P, N is the number of key/value pairs that must be processed 
in a task, M is the number of key/value pairs that have already been processed in a certain 
task, and K is the completed phase of a reduction task.

The PS for a Map is the fraction of input data read, but the execution of a Reduce is 
broken into three phases (copy, sort, and reduce), each accounting for one-third of the total 
PS. This weighting can be changed by modifying the scheduling parameters. For example, a 
task halfway through the copy phase will have a PS of 0.5*0.33 = 0.165. while a task halfway 
through the reduce phase will have a PS of 0.33+0.33+(0.5*0.33) = 0.66+0.165 = 0.83

The value of the Progress score (PS) is taken for each task, and the task(s) whose PS < 
threshold (determined by individual work) is/are then declared as straggler(s). A threshold 
of 0.2 is commonly used for comparison as in (LATE) such that any task whose PS < 0.2 
is identified as a straggler. 

Progress Rate Calculation

The Progress Rate measures the speed at which a task is progressing. It is calculated by 
dividing the amount of work completed by the time taken to complete that work. A high 
progress rate indicates that a task is progressing quickly, while a low rate suggests that 
a task is progressing slowly. Monitoring the PR allows the identification of tasks that 
are progressing at a slower rate than expected, indicating a potential straggler calculated 
as Equation 2:

              𝑃𝑃𝑃𝑃𝑖𝑖 =
𝑃𝑃𝑃𝑃[𝑖𝑖]
𝑇𝑇

            								        [2]

where, PRi is the Progress Rate of Taski, and T is the time the task has been executed. 
A threshold is then determined for PR, at which point a task whose PR is less than the 
threshold is declared a straggler, which means that its progress is very slow. 

There are certain disadvantages to using Progress Score or Progress Rate alone to 
identify straggling tasks in Hadoop.

•	 Inaccuracy of Detection: Progress Score and PR are not always accurate because 
PS is based on how much data has been processed by a task and the amount of 
time the task has been running, while PR is the rate of progress made by a task. 
Both can be misleading when a task is simply waiting for input data from a slow 
network connection or a slow input source. Such a task may have a low PS or PR 
that can make it be declared as a straggler when it is not.
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•	 The PS or PR status of a job can change if additional parameters like the data 
collection size, the data locality, the number of concurrent tasks executing on the 
same node, and network congestion or latency are not considered.

•	 Lack of context: Progress Score and Progress Rate do not provide context for a 
task, such as the complexity of the data being processed or the degree of processing 
difficulty. Some jobs could seem to have a low PS or PR due to the volume of data 
they are handling, their inherent complexity, or their resource-intensive nature, 
leading to their being declared as stragglers when they are not.

•	 Unpredictable progress: Some tasks in Hadoop, particularly those that involve 
iterative algorithms or complex data dependencies, may exhibit non-linear 
progress, which causes an inaccurate assessment of their progress and may result in 
false positives or negatives when identifying straggling tasks using PS or PR alone.

•	 Data and Computational Skews: In Hadoop, data is frequently distributed unevenly 
between tasks because of the data’s nature or the utilised partitioning method 
(Data Skew). The processing capacities will differ since the nodes’ capacities in 
a heterogeneous environment are different (Computational skew). These metrics 
do not consider both skews, leading to some tasks taking longer than others to 
complete. Hence, the progress of the tasks might not be shown correctly.

•	 Wrong Assumption: It is usually assumed that tasks progress at a constant rate, 
which is not usually the case because the nodes are not dedicated to the job alone. 
The nodes are processing other tasks. Hence, not all the nodes’ resources are 
always available to the tasks. 

Remaining Time (RT) to Complete Calculation

The RT metric estimates the time required for a task to be completed based on its current 
PR. It is calculated by dividing the remaining work by the progress rate. A high remaining 
time to complete suggests that such a task will take a long time to finish, indicating a 
potential straggler. By comparing the estimated remaining time of each task, it is possible 
to identify tasks with significantly longer estimated completion times compared to others. 
Such tasks may be potential stragglers. RT of a task is calculated according to Equation 3.   

            𝑅𝑅𝑅𝑅𝑖𝑖 =
1 − 𝑃𝑃𝑃𝑃[𝑖𝑖]
𝑃𝑃𝑃𝑃[𝑖𝑖]

                   								        [3]

where RTi, PS[i] Remaining Time (RT), Progress Score (PS) and Progress Rate (PR) of Taski

Average Remaining Time (ART) to Complete Calculation

The performance and efficiency of a system rely largely on the timely completion of tasks 
in distributed computing systems such as Hadoop, where large-scale data processing tasks 
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are broken into smaller sub-tasks and completed across a cluster of nodes. However, certain 
tasks, known as stragglers, may take substantially longer time to run to completion than 
others. These straggling tasks can slow overall throughput and lengthen job completion times, 
reducing system efficiency and user experience. To address this challenge in this study, the 
use of Average Remaining Time (ART), a metric that estimates the time remaining for each 
task to complete based on their Progress Score (PS), Progress Rate (PR) and Remaining Time 
to Complete (RT), is employed. By continuously monitoring these metrics, the progress of 
tasks, and comparing their ART values, it becomes possible to identify potential stragglers 
among tasks being executed in parallel. The ART is calculated as Equation 4:

𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 =  
∑ 1 − 𝑃𝑃𝑃𝑃[𝑖𝑖]

𝑃𝑃𝑃𝑃[𝑖𝑖]
𝑛𝑛

      							       [4]

Where, RTavg is the average of the remaining time of execution of all the tasks, PS is the 
progress score, PR is the progress rate, n is the number of tasks executed in parallel. Any 
Taski whose value is less than the calculated RTavg is then declared/identified as a straggler.

Table 1
Cluster configurations

Cluster Configurations

Node

M
ain 

M
em

ory

C
PU

 
C

ores

Storage

myclustertask-m (master) 16G 4 50G
myclustertask-0 (slave-1) 12G 2 50G
myclustertask-1 (slave-2) 12G 2 50G
myclustertask-2 (slave-3) 12G 2 50G
myclustertask-3 (slave-4) 12G 2 50G
myclustertask-4 (slave-5) 12G 2 50G
myclustertask-5 (slave-6) 12G 2 50G
myclustertask-6 (slave-7) 12G 2 50G
myclustertask-1 (slave-2) 12G 2 50G
myclustertask-2 (slave-3) 12G 2 50G

Table 2
Software configurations

Software Configurations
Operating System Ubuntu 20.04
Hadoop 2.8.5
JDK 1.8

PERFORMANCE EVALUATION

Experimental Setup of the proposed 
RMSTD

The experiment was set up and conducted on 
a Google Cloud platform. Eight nodes were 
used for this experiment. Tables 1 and 2 show 
the Cluster and Software configurations. 
Figure 3 shows the screenshot of the nodes 
running on the Google Cloud platform. 10 
GB, 20 GB and 30 GB data (text) were 
generated using a Java program to test 
the design. The result of 10 GB data size, 
when executed using a single node (laptop) 
with other hardware specifications, is 
shown in Figure 4. For the 10 GB data on 
the Google Cloud platform, the readings 
were taken after 10 s of execution, and the 
average remaining time was calculated. In 
comparison, 20 GB and 30 GB data were 
taken after 30 s and 50 s, respectively, as 
shown in Figures 4, 5 and 6.
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Figure 4. Result of the experiment (10 GB) on a single node (laptop)

Figure 3. Screenshot of the nodes running on Google Cloud Platform

Job Counters 
	 Killed reduce tasks=2
	 Launched map tasks=1
	 Launched reduce tasks=10
	 Data-local map tasks=1
	 Total time spent by all maps in occupied slots (ms)=216810
	 Total time spent by all reduces in occupied slots (ms)=10717740
	 Total time spent by all map tasks (ms)=4818
	 Total time spent by all reduced tasks (ms)=119086
	 Total vcore-milliseconds taken by all map tasks=4818
	 Total vcore-milliseconds taken by all reduce tasks=119086
	 Total megabyte-milliseconds taken by all map tasks=6937920
	 Total megabyte-milliseconds taken by all reduce tasks=342967680
Map-Reduce Framework
	 Map input records=8
	 Map output records=25
	 Map output bytes=256
	 Map output materialised bytes=423
	 Input split bytes=98
	 Combine input records=0
	 Combine output records=0
	 Reduce input groups=22
	 Reduce shuffle bytes=423
	 Reduce input records=25
	 Reduce output records=25
	 Spilled Records=50
	 Shuffled Maps =10
	 Failed Shuffles=0
	 Merged Map outputs=10
	 GC time elapsed (ms)=3730
	 CPU time spent (ms)=16880
	 Physical memory (bytes) snapshot=4417970176
	 Virtual memory (bytes) snapshot=48205594624
	 Total committed heap usage (bytes)=4498391040
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RESULTS AND DISCUSSION

The experiment was set up and conducted on the Google Cloud platform and tested with 
10 GB, 20 GB and 30 GB data; the ART was taken after 10 s, 30 s and 50 s, respectively, 
because of the data sizes. The result showed consistency for the number of tasks whose 
remaining time to complete was greater than the ART. At the 10 s threshold, two of the 
tasks (myclustertask-1 and myclustertask-3) RT were above the threshold of ART; at 30 s  
threshold, (myclustertask-1 and myclustertask-5) RT were above the threshold of ART and 
at 50 s threshold, (myclustertask-1 and myclustertask-4) RT were above the threshold of 
ART with consistency of number of straggling tasks detected. Table 3 shows the experiment 
results; a graphical representation of the result comparison for different data sizes is shown 
in Figures 5, 6, and 7. From the results when compared with Katrawi et al. (2020) (CLM) 
and Dean and Ghemawat (2008) (LATE) on straggling task detection, RMSTD shows an 
improvement of 19.51% and 23.30%, respectively. 

PAPER CONTRIBUTIONS

The following are the contributions of this paper to the research work:
1.	 Increased accuracy: RMSTD using ART offers a more precise prediction of 

when the activity is anticipated to be finished by considering the task’s typical 
behaviour over time. Temporary sluggishness, sporadic resource conflict, or 
network congestion that can lead to fluctuations in the RT have less of an impact 

Table 3
Experimental data sizes and results

RMSTD CLM LATE
Data size = 10 GB, Time threshold = 10 s

No of Stragglers 2 3 4
Time Taken 12.86 s 17.20 s 20.30 s
ART 7.52 s 12.71 s 14.09 s

Data size = 20GB, Time threshold = 30 s
No of Stragglers 2 4 3
Time Taken 31.20 s 37.30 s 37.10 s
ART 29.30 s 31.70 s 33.71 s

Data size = 30 GB, Time threshold = 50 s
No of Stragglers 2 4 3
Time Taken 55.00 s 69.70 s 71.20 s
ART 49.55 s 62.90 s 64.81 s

Averages
No of Stragglers 2 3.67 3.33
Time Taken 33.02 41.4 42.87
ART 28.79 35.77 37.54
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Figure 5. Experimental result with data size of 10 GB text file

Figure 6. Experimental result with data size of 20 GB text file
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Figure 7. Experimental result with data size of 30 GB text file
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on this calculation. RMSTD through ART provides a more reliable and accurate 
indicator of work advancement. 

2.	 Better straggler detection: Straggling tasks take significantly longer than the 
average or projected completion time. RMSTD makes detecting tasks that deviate 
from the norm and demonstrate straggling behaviour easier. This comparison aids 
in differentiating between jobs that may be suffering true performance concerns 
and those that are advancing at a normal rate.

3.	 Smoothing out fluctuations: RMSTD provides a more reliable and smoothed 
estimate of the task’s remaining time compared to other RT approaches. It 
considers the task’s historical behaviour, considering the average time it has 
taken to accomplish identical pieces of work. It mitigates the impact of short-
term oscillations or outliers in the Remaining Time, resulting in a more reliable 
estimate of job completion. Outliers and skews do not overly influence the 
average, and this can make it easier to identify tasks that are consistently taking 
longer than expected.

4.	 Improved decision-making: When deciding on tasks, resources, or task 
scheduling, RMSTD offers a more trustworthy base in giving a more informed 
perspective on the anticipated completion timeframes of tasks by taking the past 
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average into account. Through this, it is easier to allocate resources more wisely 
and develop better task management plans, ultimately improving the efficiency 
of the work.

CONCLUSION

RMSTD provides a more stable, accurate, and reliable measure of task progress. It helps 
identify straggling tasks more effectively and facilitates better decision-making in Hadoop 
environments. It also offers a better advantage in detecting straggling tasks in Hadoop, 
and it has proven to be a useful approach for raising the effectiveness and performance 
of massively parallel data processing systems. Identifying stragglers and taking proactive 
steps to reduce their impact on job completion timeframes is feasible by continuously 
monitoring their progress and calculating the remaining execution time for tasks. In 
distributed computing systems, this strategy helps to optimise resource usage, shorten job 
execution times, and improve user experience.
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